\begin{tabbing} q{-}sat{-}constraints($k$;$A$;$y$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=($\parallel$$y$$\parallel$ = $k$)\+ \\[0ex]c$\wedge$ (\=$\forall$$a$$\in$$A$.\+ \\[0ex]let $F$,$r$,$G$ = $a$ in \\[0ex]if\= ($r$ =$_{0}$ 0)\+ \\[0ex]then q{-}linear($k$;$j$.$F$[$j$]?0;$y$) = q{-}linear($k$;$j$.$G$[$j$]?0;$y$) \-\\[0ex]if\= ($r$ =$_{0}$ 1)\+ \\[0ex]then q{-}linear($k$;$j$.$F$[$j$]?0;$y$) $\leq$ q{-}linear($k$;$j$.$G$[$j$]?0;$y$) \-\\[0ex]else q{-}linear($k$;$j$.$F$[$j$]?0;$y$) $<$ q{-}linear($k$;$j$.$G$[$j$]?0;$y$) \\[0ex]fi ) \-\- \end{tabbing}